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Optimal transportation — Monge-Kantorovitch

Probléme des déblais et des remblais

Gaspard Monge (1746-1818) formulated in 1781 the following
engineering problem :

Transportation of mass for the lowest cost,
given initial and final distribution
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Optimal transportation — Monge-Kantorovitch

Analytic formulation

e Initial distribution : probability measure pq
e Final distribution : probability measure 11
Problem :

T

where T (po, p1) of all maps T : x — T(x) such that

po = pooT
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Optimal transportation — Monge-Kantorovitch

Probabiblistic formulation

e Leonid Vitaliyevich Kantorovich (1912-1986) provided in 1942 a
formulation which does not involve the transportation scheme T :

inf /c(x, y)m(dx, dy)

WE”(MO?UJ)

where M(po, pt1) is the collection of all joint probability measures
with marginals 1o and 1

Exemple : c(x,y) = |x — y|*> = maximization of correlations :

supwen(uo#l)E”[XY]
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Optimal transportation — Monge-Kantorovitch

The discrete version

e The discrete version is called Optimal assignment problem and is
widely studied in the operations research literature :

e Assignment persons / jobs

e Hedge funds : assignment of executed orders to different funds...
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Optimal transportation — Monge-Kantorovitch

Kantorovich duality

Duality in linear programming, Legendre-Fenchel duality...

e Penalize the constraint = Lagrangian
® Min,; max), = max) min;

This leads to the dual formulation :
sup { [ 00 m(dn) — [ elnaldn) : 6(») — () < cx.)}

Economic interpretation :
@ ¢(x) bid price at x (buy at this price)
@ t(y) ask price at y (sell at this price) ﬂ
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Optimal transportation along controlled stochastic dynamics

Controlled dynamics

e W : Brownian motion with values in RY

e U : collection of all control processes v = (b, a2) prog.
measurable processes (with appropriate dimensions) valued in U
(closed convex subset of R)

e Controlled dynamics :
dXt = btdt + O'tth

We shall impose the transportation to follows the above dynamics
for some choice of control (b, 0?)

Mikami and Thieullen considered the case U = RX x {I4} (fixed Aﬂ
diffusion coefficient)
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Optimal transportation along controlled stochastic dynamics

Optimal transportation problem

Optimal transportation under controlled stochastic dynamics :

1
Vo = inf )E[/ L(t, X, ve)dt]
0

vEU (o, 1

where X, := (X,)u<¢ and

U(po, 1) = {veU: Xo~poand Xy~ g}
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Optimal transportation along controlled stochastic dynamics

Dual formulation (Xiaolu TAN)

Assume u+—— L(t,x, u) convex and coercive then

Vo = sup [enim(@)+ [ eobxno(d

tﬂlECB

where ©o(x) = ¢(0, x) and ¢ defined by

1
o(t,x) = inLE[/ L(s, X£%, vs)ds — p1(X™)]
ve t

Unconstrained stochastic control problem
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Optimal transportation along controlled stochastic dynamics

The Markov case : control of PDEs

In the Markov case
L(s,xq,u) = L(s,xs, )

The value function ¢ can be characterized by the dynamic
programming equation :

. 1 22 2\
Orp + (b;;])ceu{b. Dy + ETr[a D?¢| + L(t,x,b,0°)} =0

(L, x) = ¢1(x)

= Numerical schemes...
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Problem formulation
Connection with previous literature
Exploiting the dual formulation

Super and sub-hedging under uncertain volatility S (1 memy el

Unspecified volatility process : abstract formulation

e Q={we C(Ry): =0},
e B coordinate process, F = {F;,t > 0}, Py : Wiener measure

Suppose that B is only known to be a continuous local martingale
with quadratic variation (B) a.c. wrt Lebesgue. Let

P = {]P’o o([yotdB:)~t: o F—prog. meas., fOT loe|2dt < oo}
e Zero interest rate, and risky asset defined by :
dSt = StdBt, P —(q.s.

where P—quasi-surely means P—a.s. for all P € P
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Problem formulation
Connection with previous literature
Exploiting the dual formulation

Super and sub-hedging under uncertain volatility S (1 memy el

Model-free bounds

e Super-hedging and Sub-hedging problems of F1—meas. r.v. £

-
U:_inf{Xo: 3H€H:X0+/ H:dB; > &, P—q.s.}
0

-
L::sup{Xo: EIHGH:XO—I—/ H:dB; <&, P—q.s.}
0

e the portfolio H € H does not depend on a particular P € P...

e Denis-Martini 2005 and Peng 2007 for the bounded volatility case
(¢ <o <7)
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Problem formulation
Connection with previous literature
Exploiting the dual formulation

Super and sub-hedging under uncertain volatility S (1 memy el

More appealing formulation

e Control process is the volatlity o valued in R

e Controlled process is the underlying asset price process :
C/St = StO'tth

e Model-free bounds for the derivative (S 1)

-
U:= inf{Xo: EIHGH:X0+/ H:dB; > &, a.s. for all a}
0

-
L::sup{Xo: EIHEH:XO—i-/ H:dB: <&, as. foralla}
0
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Problem formulation
Connection with previous literature
Exploiting the dual formulation

Super and sub-hedging under uncertain volatility S (1 memy el

Dual formulation

Consider the superhedging problem
T
Uy :=inf {Xo : Xo +/ H:dB; > &, P —q.s. for some H € Ho}
0

where

loc

Ho = {H: H e M (P) and X" > Mart”, vP € P}
Theorem (Soner, T., Zhang 2010)  For all { € LF :
Up = sup E'[¢]
PeP

and existence holds for the problem Uy ﬂ
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Problem formulation
Connection with previous literature
Exploiting the dual formulation

Super and sub-hedging under uncertain volatility S (1 memy el

Bounds with no further information

For £ = g(S7), we find

Uo(€) = g°°"(So) and  Lo(&) = g™ (%)

and the corresponding hedging strategy H* is of type Buy-and-Hold

= dynamic hedge does not help to reduce the superhedging cost...
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Problem formulation
Connection with previous literature
Exploiting the dual formulation

Super and sub-hedging under uncertain volatility S (1 memy el

Model-free bounds with more information

e Suppose that prices of T—maturity call options for all possible
strikes c(k), k > 0 are observed and tradable. Then the map

k — c(k) :=E[(ST — k)]
characterizes the distribution St ~p pt by p([k, 00)) = —c/(k)
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Super and sub-hedging under uncertain volatility S (1 memy el

Model-free bounds with more information

e Suppose that prices of T—maturity call options for all possible
strikes c(k), k > 0 are observed and tradable. Then the map

k—s c(k) = E[(ST — k)]

characterizes the distribution St ~p pt by p([k, 00)) = —c/(k)
e The no-arbitrage bounds can be improved to

U(p) = inf{xo CAHEM, e XN > ¢ P—q.s.}
L(y) = sup{Xo: THeH, xe A: XM <¢, P—q.s.}
where A = {bdd measurable functions} and
XPN = Xo + [i] HedBe + M(ST) — ()
C=Xo+ fo HedB: + [ X' (K)[(ST — k)™ — c(k)]dk " lﬂ
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Problem formulation

Connection with previous literature
. . . Exploiti hi | fi lati
Super and sub-hedging under uncertain volatility RIS D i CIUUTLELETC
Extension to many marginals

Duality and stochastic control

e Notice that
U(u) = infaen inf {Xo: 3H € H,XF > €~ A(ST) +u(}), P—as.}

L(p) = supyep sup{Xo: I H € H, XH <& —X(S7)+p(N), P—as.}

e Then, the previous duality implies that

Ulu) = inf sup EX k_)‘(ST)"i‘,UJ()‘)}
L(p) = sup inf, E [é’ — A(S7) +u(A)}

e For every fixed X : standard stochastic control problem...
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Problem formulation
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Exploiting the dual formulation

Super and sub-hedging under uncertain volatility S (1 memy el

The Skorohod Embedding Problem

Previous literature by D. Hobson, L.C.G. Rogers, A. Cox, J. Obloj,
B. Dupire, P. Carr, R. Lee

e adressed this problem by using results from the SEP :

Given p probability measure on R with [ |x|u(dx) < oo
Find a stopping time 7 such that
B ~ pand {Binr, t > 0} Ul martingale

(Hall, Monroe, Azéma, Yor, Perkins, Chacon, Walsh, Rost, Root,
Bass, Vallois)

e More than twenty known solutions (see Obloj for a survey)
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Super and sub-hedging under uncertain volatility S (1 memy el

Example : the Azéma-Yor solution

Define the barycenter function :

L% su(ds)
[ u(ds)

Then, the Azéma-Yor solution of the SEP is :

b(x) =

Tay = inf{t >0: B > b(B¢)}, with B} := max Bs
s<

i.e. {Btarays t > 0} is Ul martingale and B, ~ p.
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Problem formulation
Connection with previous literature
Exploiting the dual formulation

Super and sub-hedging under uncertain volatility S (1 memy el

Example : the Azéma-Yor solution

Define the barycenter function :

_ J su(ds)
b(x) := 7fxoou(d5)

Then, the Azéma-Yor solution of the SEP is :

Tay = inf{t >0: B > b(B¢)}, with B} := max Bs
i.e. {Btarays t > 0} is Ul martingale and B, ~ p.
For later use

decreases on [0,b71(x)] and increases on [b!(x), x) Aﬂ
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Super and sub-hedging under uncertain volatility S (1 memy el

Connection with our problem

e (M;)t>0 continuous martingale, My = 0 and Mt ~ p,

Then M; = By, and (M) solution of SEP

t

e Let 7 be a solution of SEP

. is a continuous martingale, My = 0 and

Then My :=B_+ ,
T—t
M. ~ pu.
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Super and sub-hedging under uncertain volatility S (1 memy el

Optimality of the Azéma-Yor solution

Let g be C! nondecreasing, and define :

m X
H(m,x) = /O g/(r)T_l(r)dr so that

e {H(Bf,B:),t >0} is a local martingale
e g(m) — H(m,x) < g(b(x)) — H(b(x),x) =: G(x)

Then
g(Bf) < H(B:B;) +G(B:)
N———
(loc. mart.),
and
EF [g(S%)] = E[g /G dx) i
e lg(57)] = max )u(dx) =E [g(B},,)] )k
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Problem formulation
Connection with previous literature
. . . iti dual formulation
Super and sub-hedging under uncertain volatility Explolt_mg i G 5
xtension to many marginals

For general derivatives : Numerical approximation

e For every fixed A, build a numerical scheme to approximate the
value function

o= ]PEE;JE[E — A(S7)]

this is a singular stochastic control, which can be characterized by
an elliptic equation... finite differences
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Super and sub-hedging under uncertain volatility S (1 mEy e

For general derivatives : Numerical approximation

e For every fixed A, build a numerical scheme to approximate the
value function

o= ]PEE;JE[E — A(S7)]

this is a singular stochastic control, which can be characterized by
an elliptic equation... finite differences
e Minimize over A :

inf u(\) — v
A
numerical approximation by the gradient projection algorithm...

Xiaolu TAN... P
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Problem formulation
Connection with previous literature
Exploiting the dual formulation

Super and sub-hedging under uncertain volatility S (1 mEy e

Lookback options with one known marginal distribution

Let :

¢ = g(57,57) where S7 = rg‘nga;_(St

Our main results :

recover the known explicit bounds in this context (so far, those
induced by the Azéma-Yor embedding)

Hobson 98, Hobson and Kimmel 2011
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Super and sub-hedging under uncertain volatility S (1 mEy e

Dynamic Programming Equation — Fixed A

Given \(.), the stochastic control problem is

(6,5, m) = sup B [5(SE5, ME™) ~ A(SE)], MES™ = m max S
PeP [t,7]

— Optimal stopping representation and DPE characterization :

uM(t,s,m) = u’(s,m) = sup E[g(S3, ME™) — A(S2)]
TET

Optimal stopping policy  (if exists) Optimal volatility ﬂ
process
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Problem formulation
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Super and sub-hedging under uncertain volatility S (1 mEy e

Dynamic Programming Equation — Fixed A

Given \(.), the stochastic control problem is

u(t,s,m) == sup EF [g(S7°, MZ¥™) = \(S7°)], ME™:=mV max S
PeP [t.T]

— Optimal stopping representation and DPE characterization :
uN(t,s,m) = uN(s,m) = sup E [g(55, MP™) — A(S7)]
TET
min{u’\—(g—)\),—u;\s} = O0for0O<s<m
u(m,m) =0

Optimal stopping policy 7 (if exists) = Optimal volatility ﬂ
process o*
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Problem formulation
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Super and sub-hedging under uncertain volatility S (1 mEy e

Lagrange Multipliers reduction

We first prove that :

Upw) = inf  sup u(A) +E[g(MZ™) — A(S7)]
gss—A"<0 TeT
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Problem formulation
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Exploiting the dual formulation

Super and sub-hedging under uncertain volatility S (1 mEy e

Solving the optimal stopping problem

Given A with g — X concave :

uMs,m) = sup E[g(S5, M) — A(S2)]
TET

assume g is C! increasing, then we expect that there is a boundary
1 (continuous increasing) so that :

uM(s, m) = (g=A)(sAg(m), m)+(g—A)s(sAt:(m), m)(s—sAp(m))
The Neuman condition provides the (ODE) for 1 :

_ gm(t(m), m)

) Eem(t(m).m)

(g - )‘)ss(w(m)v m)¢'(m)
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Super and sub-hedging under uncertain volatility S (1 mEy e

The explicit upper bound

SoVy(Mo)
U = aS0)+ jnf, )+ [ (s N ok
> g(S0)+ pf, [ N (K)dk
= S50, [ el N e

= g(So) + |nf/ (¥(x)) ) ————dx (ODE)

v

g(50)+/ inf C(%g’(X)dx —s P (x) = b7I(x)

P<x X —

Azéma-Yor. lﬂ
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Super and sub-hedging under uncertain volatility S (1 mEy e

The explicit upper bound

SoVi(Mo)
U(p) = g(So)+ inf p(A)+ / (s — k)\"(k)dk
A &(Mo)

> g(S0)+ pf, [ N (K)dk

= &(So) + inf [ c(v(x ))X’(w( ))¥' (x)dx

_ (x)
= g(So) + |nf / () ————dx (ODE)
. C(w) / /% — —1
> g(so)+/¢gfx S (e — 0 = b ()
Azéma-Yor. The reverse inequality is obvious... lﬂ
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Super and sub-hedging under uncertain volatility ST (0 FEmy ETTED

A recursive sequence of control problems

Given n functions A = (\j)1<i<p define :

v = uO(So, Mp) = sup EF g(M,,) Z/\ St,)
PeP
Optimal upper bound given that Sy, ~ p;, i < n:

n

inf Zﬂi(/\i) + u

(Mi)i<i<n P
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Super and sub-hedging under uncertain volatility ST (0 FEmy ETTED

A recursive sequence of control problems

Given n functions A = (\j)1<i<p define :

= u®(So, Mp) = sup EF
PeP

g(M,) — Z /\i(stn)]

i=1
Optimal upper bound given that Sy, ~ p;, i < n:
n

inf () + u)‘
(Mi)i<i<n ;M( )

Then, we introduce for i =1,...,n:

u(s,m) = g(m)
(s, m) = ;:gEP [U'(Stna Me,) = XilSe)|(S: M)y = (s, m)} Pk
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Super and sub-hedging under uncertain volatility ST (0 FEmy ETTED

Extension of Peskir's maximality principle

Lemma Optimization can be restricted to those \;'s such that
A — u' is strictly convex forall i =1,...,n

Theorem For M s.t. X' — u' is strictly convex, u'~! < oo iff there
is a maximal solution v; of the ODE

: ; U{n iy m
UL N W) — drem) =ty (i, m) + o2 )
m —
which stays strictly below the diagonal ¥;(m) < m, m > 0.

In this case :
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Super and sub-hedging under uncertain volatility ST (0 FEmy ETTED

Explicit finite dimensional optimization problem

Proceeding as in the case of one marginal, we arrive at the
optimization problem :

UGt -+ pin)
>/ inf +n ! Ci ’QZ}/ . Ci(ai+1) -
0<h.<x X — 1/1,7 5\ X~ 77/}/ X _ai—i-l {¢i<¢i+1}

where

V=Y. Ny, forall i=1,...,n
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Super and sub-hedging under uncertain volatility ST (0 FEmy ETTED

Optimal upper bound given two marginals

The case n = 2 reduces to :

: a(vz2)  a(v)
zpl,-rﬁx {C2(¢2) ]I{¢2>1Z11} <X —p  x—1
which recovers Hobson and Rogers 1998 —>
o 11(x) = by !(x) (Azéma-Yor)
@ 1p(x) defined by

¢i2n<fx {cz(¢2) ~ Lyosya(x)) < ;151#;1 B )f{%i’(?{;) }
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Super and sub-hedging under uncertain volatility ST (0 FEmy ETTED

The n—marginals problem reduces to 2—marginals problems

e First, minimize wrt 1); < 1,, given %2, e ’%n < X

(28-2)

min

B1<0, 1 <9, }
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Super and sub-hedging under uncertain volatility ST (0 FEmy ETTED

The n—marginals problem reduces to 2—marginals problems

e First, minimize wrt 1); < 1,, given %2, e ’%n < X

(28-2)

min

B1<0, 1 <9, }

e For i < n, assume ;_(x) does not depend on ¢; on
{¥7_1(x) < i} for all x > 0. Then with 1, 11(x) = x :

min Ci@,-) B Cifl(ai) B Cifl(@;k—l(x)) 1
< x —; x —1;_1(x) {Pia00<v; }

<t X — ¢,'
These steps are similar to the 2—marginals case of Brown, Hobson

and Rogers... ﬂ
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Solving the n—marginals problem

Step1:¢{:bf1
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Super and sub-hedging under uncertain volatility ST (0 FEmy ETTED

Solving the n—marginals problem

Step 1 : 4 = byt
Step i : minimization over 1); < @,-H, given @7_1 :

o If bj < bjj1, we find ¢F = bfl (this recovers Madan and Yor)
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Super and sub-hedging under uncertain volatility ST (0 FEmy ETTED

Solving the n—marginals problem

Step 1 :¢{:bf1

Step i : minimization over ¢; < 1,4, given Pr g

o If bj < bjj1, we find ¢F = bfl (this recovers Madan and Yor)

e In the general case (not covered in the literature), we rely on :
Lemma Let/i=2,...,n be fixed, assume that ¢; > ¢;_1, and let

E*(X)Ee any minimizer of the Step i problem. Then, the function
x — ;" (x) is nondecreasing
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Super and sub-hedging under uncertain volatility ST (0 FEmy ETTED

Future projects

e Continuous-time limit (extension of Madan-Yor 02)
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Super and sub-hedging under uncertain volatility ST (0 FEmy ETTED

Future projects

e Continuous-time limit (extension of Madan-Yor 02)

e Construct martingale processes corresponding to the bound
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Super and sub-hedging under uncertain volatility ST (0 FEmy ETTED

Future projects

e Continuous-time limit (extension of Madan-Yor 02)
e Construct martingale processes corresponding to the bound

e Lower/upper bound on Variance calls given 1 (and more generally
n) marginals,
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Future projects

e Continuous-time limit (extension of Madan-Yor 02)
e Construct martingale processes corresponding to the bound

e Lower/upper bound on Variance calls given 1 (and more generally
n) marginals,

e General theory for the treatment of stochastic control problems
given marginals, i.e. optimal transportation along controlled
stochastic dynamics
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