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Problème des déblais et des remblais

Gaspard Monge (1746-1818) formulated in 1781 the following
engineering problem :

Transportation of mass for the lowest cost,
given initial and final distribution
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Analytic formulation

• Initial distribution : probability measure µ0

• Final distribution : probability measure µ1

Problem :
min

T∈T (µ0,µ1)

∫
c
(
x ,T (x)

)
µ0(dx)

where T (µ0, µ1) of all maps T : x 7−→ T (x) such that

µ1 = µ0 ◦ T−1
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Probabiblistic formulation

• Leonid Vitaliyevich Kantorovich (1912-1986) provided in 1942 a
formulation which does not involve the transportation scheme T :

inf
π∈Π(µ0,µ1)

∫
c(x , y)π(dx , dy)

where Π(µ0, µ1) is the collection of all joint probability measures
with marginals µ0 and µ1

Exemple : c(x , y) = |x − y |2 =⇒ maximization of correlations :

supπ∈Π(µ0,µ1)Eπ[XY ]
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The discrete version

• The discrete version is called Optimal assignment problem and is
widely studied in the operations research literature :

• Assignment persons / jobs

• Hedge funds : assignment of executed orders to different funds...
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Kantorovich duality

Duality in linear programming, Legendre-Fenchel duality...

• Penalize the constraint =⇒ Lagrangian
• minπ maxλ = maxλminπ

This leads to the dual formulation :

sup
{∫

ψ(y)µ1(dy)−
∫
ϕ(x)µ0(dx) : ψ(y)− ϕ(x) ≤ c(x , y)

}
Economic interpretation :

ϕ(x) bid price at x (buy at this price)
ψ(y) ask price at y (sell at this price)
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Controlled dynamics

•W : Brownian motion with values in Rd

• U : collection of all control processes ν = (b, σ2) prog.
measurable processes (with appropriate dimensions) valued in U
(closed convex subset of Rk)

• Controlled dynamics :

dXt = btdt + σtdWt

We shall impose the transportation to follows the above dynamics
for some choice of control (b, σ2)

Mikami and Thieullen considered the case U = Rk ′ × {Id} (fixed
diffusion coefficient)
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Optimal transportation problem

Optimal transportation under controlled stochastic dynamics :

V0 := inf
ν∈U(µ0,µ1)

E
[ ∫ 1

0
L(t,X t , νt)dt

]
where X t := (Xu)u≤t and

U(µ0, µ1) :=
{
ν ∈ U : X0 ∼ µ0 and X1 ∼ µ1

}
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Dual formulation (Xiaolu TAN)

Assume u 7−→ L(t, x., u) convex and coercive then

V0 = sup
ϕ1∈C0

b

∫
ϕ1(y)µ1(dy) +

∫
ϕ0(x)µ0(dx)

where ϕ0(x) = ϕ(0, x) and ϕ defined by

ϕ(t, x) := inf
ν∈U

E
[ ∫ 1

t
L(s,X t,x

s , νs)ds − ϕ1(X t,x
1 )
]

Unconstrained stochastic control problem
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The Markov case : control of PDEs

In the Markov case

L(s, x s , u) = L(s, xs , u)

The value function ϕ can be characterized by the dynamic
programming equation :

∂tϕ+ inf
(b,σ2)∈U

{
b · Dϕ+

1
2
Tr
[
σ2D2ϕ

]
+ L(t, x , b, σ2)

}
= 0

ϕ(1, x) = ϕ1(x)

=⇒ Numerical schemes...
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Unspecified volatility process : abstract formulation

• Ω =
{
ω ∈ C (R+) : ω(0) = 0

}
,

• B coordinate process, F = {Ft , t ≥ 0}, P0 : Wiener measure

Suppose that B is only known to be a continuous local martingale
with quadratic variation 〈B〉 a.c. wrt Lebesgue. Let

P :=
{
P0 ◦ (

∫ .
0 σtdBt)−1 : σ F−prog. meas.,

∫ T
0 |σt |2dt <∞

}
• Zero interest rate, and risky asset defined by :

dSt = StdBt , P − q.s.

where P−quasi-surely means P−a.s. for all P ∈ P
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Model-free bounds

• Super-hedging and Sub-hedging problems of FT−meas. r.v. ξ

U := inf
{

X0 : ∃ H ∈ H : X0 +

∫ T

0
HtdBt ≥ ξ, P − q.s.

}

L := sup
{

X0 : ∃ H ∈ H : X0 +

∫ T

0
HtdBt ≤ ξ, P − q.s.

}
• the portfolio H ∈ H does not depend on a particular P ∈ P...

• Denis-Martini 2005 and Peng 2007 for the bounded volatility case
(σ ≤ σ. ≤ σ)
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More appealing formulation

• Control process is the volatlity σ valued in R+

• Controlled process is the underlying asset price process :

dSt = StσtdWt

• Model-free bounds for the derivative ξ(ST )

U := inf
{

X0 : ∃ H ∈ H : X0 +

∫ T

0
HtdBt ≥ ξ, a.s. for all σ.

}

L := sup
{

X0 : ∃ H ∈ H : X0 +

∫ T

0
HtdBt ≤ ξ, a.s. for all σ.

}
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Dual formulation

Consider the superhedging problem

U0 := inf
{

X0 : X0 +

∫ T

0
HtdBt ≥ ξ, P − q.s. for some H ∈ H0

}
where

H0 :=
{

H : H ∈ H2
loc(P) and XH ≥ MartP, ∀P ∈ P

}
Theorem (Soner, T., Zhang 2010) For all ξ ∈ L∞P :

U0 = sup
P∈P

EP[ξ]

and existence holds for the problem U0
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Bounds with no further information

For ξ = g(ST ), we find

U0(ξ) = gconc(S0) and L0(ξ) = gconv(S0)

and the corresponding hedging strategy H∗ is of type Buy-and-Hold

=⇒ dynamic hedge does not help to reduce the superhedging cost...

Nizar TOUZI Model independent bounds for options



Optimal transportation – Monge-Kantorovitch
Optimal transportation along controlled stochastic dynamics

Super and sub-hedging under uncertain volatility

Problem formulation
Connection with previous literature
Exploiting the dual formulation
Extension to many marginals

Model-free bounds with more information

• Suppose that prices of T−maturity call options for all possible
strikes c(k), k ≥ 0 are observed and tradable. Then the map

k 7−→ c(k) := E[(ST − k)+]

characterizes the distribution ST ∼P µ by µ
(
[k ,∞)

)
= −c ′(k)

• The no-arbitrage bounds can be improved to

U(µ) := inf
{

X0 : ∃ H ∈ H, λ ∈ Λ : XH,λ
T ≥ ξ, P − q.s.

}
L(µ) := sup

{
X0 : ∃ H ∈ H, λ ∈ Λ : XH,λ

T ≤ ξ, P − q.s.
}

where Λ = {bdd measurable functions} and

XH,λ
T := X0 +

∫ T
0 HtdBt + λ(ST )− µ(λ)

“ = X0 +
∫ T
0 HtdBt +

∫
λ′′(k)[(ST − k)+ − c(k)]dk ′′
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Duality and stochastic control

• Notice that

U(µ) = infλ∈Λ inf
{
X0 : ∃ H ∈ H,XH

T ≥ ξ − λ(ST ) + µ(λ), P − q.s.
}

L(µ) = supλ∈Λ sup
{
X0 : ∃ H ∈ H,XH

T ≤ ξ − λ(ST ) + µ(λ), P − q.s.
}

• Then, the previous duality implies that

U(µ) := inf
λ∈Λ

sup
P∈P

EP
[
ξ − λ(ST ) + µ(λ)

]
L(µ) := sup

λ∈Λ
inf
P∈P

EP
[
ξ − λ(ST ) + µ(λ)

]
• For every fixed λ : standard stochastic control problem...
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The Skorohod Embedding Problem

Previous literature by D. Hobson, L.C.G. Rogers, A. Cox, J. Obloj,
B. Dupire, P. Carr, R. Lee

• adressed this problem by using results from the SEP :

Given µ probability measure on R with
∫
|x |µ(dx) <∞

Find a stopping time τ such that
Bτ ∼ µ and {Bt∧τ , t ≥ 0} UI martingale

(Hall, Monroe, Azéma, Yor, Perkins, Chacon, Walsh, Rost, Root,
Bass, Vallois)

• More than twenty known solutions (see Obloj for a survey)
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Example : the Azéma-Yor solution

Define the barycenter function :

b(x) :=

∫∞
x sµ(ds)∫∞
x µ(ds)

Then, the Azéma-Yor solution of the SEP is :

τAY := inf {t > 0 : B∗t > b(Bt)} , with B∗t := max
s≤t

Bs

i.e. {Bt∧τAY , t ≥ 0} is UI martingale and BτAY ∼ µ.

For later use

c(ζ)

x − ζ
decreases on

[
0, b−1(x)

]
and increases on

[
b−1(x), x

)
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Connection with our problem

• (Mt)t≥0 continuous martingale, M0 = 0 and MT ∼ µ,

Then Mt = B〈M〉t and 〈M〉T solution of SEP

• Let τ be a solution of SEP

Then Mt := B t
T−t∧τ

is a continuous martingale, M0 = 0 and
Mτ ∼ µ.
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Optimality of the Azéma-Yor solution

Let g be C 1 nondecreasing, and define :

H(m, x) :=

∫ m

0
g ′(r)

r − x
r − b−1(r)

dr so that

{H(B∗t ,Bt), t ≥ 0} is a local martingale
g(m)− H(m, x) ≤ g

(
b(x)

)
− H

(
b(x), x

)
=: G (x)

Then

g
(
B∗τ
)
≤ H

(
B∗τ ,Bτ

)︸ ︷︷ ︸
(loc. mart.)τ

+G
(
Bτ
)

and

sup
P∈P(µ)

EP [g(S∗T )] = max
τ∈T (µ)

E
[
g
(
B∗τ
)]

=

∫
G (x)µ(dx) = E

[
g
(
B∗τAY

)]
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For general derivatives : Numerical approximation

• For every fixed λ, build a numerical scheme to approximate the
value function

uλ := inf
P∈P

E [ξ − λ(ST )]

this is a singular stochastic control, which can be characterized by
an elliptic equation... finite differences
• Minimize over λ :

inf
λ
µ(λ)− uλ

numerical approximation by the gradient projection algorithm...

Xiaolu TAN...
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Lookback options with one known marginal distribution

Let :

ξ = g(ST , S∗T ) where S∗T := max
t≤T

St

Our main results :

recover the known explicit bounds in this context (so far, those
induced by the Azéma-Yor embedding)

Hobson 98, Hobson and Kimmel 2011

Nizar TOUZI Model independent bounds for options



Optimal transportation – Monge-Kantorovitch
Optimal transportation along controlled stochastic dynamics

Super and sub-hedging under uncertain volatility

Problem formulation
Connection with previous literature
Exploiting the dual formulation
Extension to many marginals

Dynamic Programming Equation – Fixed λ

Given λ(.), the stochastic control problem is

uλ(t, s,m) := sup
P∈P

EP [g(S t,s
T ,Mt,s,m

T )− λ(S t,s
T )
]
, Mt,s,m

T := m ∨max
[t,T ]

S t,s
.

=⇒ Optimal stopping representation and DPE characterization :

uλ(t, s,m) = uλ(s,m) = sup
τ∈T

E [g(S s
τ ,M

s,m
τ )− λ(S s

τ )]

min
{

uλ − (g − λ),−uλss
}

= 0 for 0 < s < m

uλm(m,m) = 0

Optimal stopping policy τ∗ (if exists) =⇒ Optimal volatility
process σ∗
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Lagrange Multipliers reduction

We first prove that :

U(µ) = inf
gss−λ′′≤0

sup
τ∈T

µ(λ) + E [g(Ms,m
τ )− λ(S s

τ )]
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Solving the optimal stopping problem

Given λ with g − λ concave :

uλ(s,m) = sup
τ∈T

E [g(S s
τ ,M

s,m
τ )− λ(S s

τ )]

assume g is C 1 increasing, then we expect that there is a boundary
ψ (continuous increasing) so that :

uλ(s,m) = (g−λ)(s∧ψ(m),m)+
(
g−λ)s(s∧ψ(m),m)

(
s−s∧ψ(m)

)
The Neuman condition provides the (ODE) for ψ :

(
g − λ)ss(ψ(m),m)ψ′(m) =

gm(ψ(m),m)

m − ψ(m)
+ gsm(ψ(m),m)
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The explicit upper bound

W.l.o.g. λ(S0) = 0, then :

U(µ) = g(S0) + inf
λ′′≥0

µ(λ) +

∫ S0∨ψ(M0)

ψ(M0)
(s − k)λ′′(k)dk

≥ g(S0) + inf
λ′′≥0

∫
c(k)λ′′(k)dk

= g(S0) + inf
λ′′≥0

∫
c
(
ψ(x)

)
λ′′(ψ(x))ψ′(x)dx

= g(S0) + inf
ψ∈...

∫
c
(
ψ(x)

) g ′(x)

x − ψ(x)
dx (ODE )

≥ g(S0) +

∫
inf
ψ<x

c(ψ)

x − ψ
g ′(x)dx −→ ψ∗(x) = b−1(x)

Azéma-Yor. The reverse inequality is obvious...
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A recursive sequence of control problems

Given n functions λ = (λi )1≤i≤n define :

uλ := u0(S0,M0) = sup
P∈P

EP

[
g(Mtn)−

n∑
i=1

λi (Stn)

]
Optimal upper bound given that Sti ∼ µi , i ≤ n :

inf
(λi )1≤i≤n

n∑
i=1

µi (λi ) + uλ

Then, we introduce for i = 1, . . . , n :

un(s,m) := g(m)

ui−1(s,m) := sup
P∈P

EP
[
ui (Stn ,Mtn)− λi (Stn)

∣∣∣(S ,M)tn−1 = (s,m)
]
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Extension of Peskir’s maximality principle

Lemma Optimization can be restricted to those λi ’s such that
λi − ui is strictly convex for all i = 1, . . . , n

Theorem For λi s.t. λi − ui is strictly convex, ui−1 <∞ iff there
is a maximal solution ψi of the ODE

ψ′i
(
λ′′i (ψi )− ui

ss(ψi ,m)
)

= ui
sm (ψi ,m) +

ui
m (ψi ,m)

m − ψi

which stays strictly below the diagonal ψi (m) < m, m ≥ 0.
In this case :

ui−1(s,m) = ui (s,m)−λi (s)+

∫ s∨ψi (m)

ψi (m)
(s−k)

(
λ′′i (k)− ui

ss(k ,m)
)
dk

Nizar TOUZI Model independent bounds for options



Optimal transportation – Monge-Kantorovitch
Optimal transportation along controlled stochastic dynamics

Super and sub-hedging under uncertain volatility

Problem formulation
Connection with previous literature
Exploiting the dual formulation
Extension to many marginals

Explicit finite dimensional optimization problem

Proceeding as in the case of one marginal, we arrive at the
optimization problem :

U(µ1, . . . , µn)

≥
∫

inf
0<ψ.<x

cn(ψn)

x − ψn
+

n−1∑
i=1

(
ci
(
ψi
)

x − ψi
−

ci
(
ψi+1

)
x − ψi+1

)
1I{

ψi<ψi+1

}
where

ψi := ψi ∧ . . . ∧ ψn for all i = 1, . . . , n
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Optimal upper bound given two marginals

The case n = 2 reduces to :

inf
ψi<x

{
c2(ψ2)− 1I{ψ2>ψ1}

(
c1(ψ2)

x − ψ2
− c1(ψ1)

x − ψ1

)}
which recovers Hobson and Rogers 1998 =⇒

ψ1(x) = b−1
1 (x) (Azéma-Yor)

ψ2(x) defined by

inf
ψ2<x

{
c2(ψ2)− 1I{ψ2>ψ1(x)}

(
c1(ψ2)

x − ψ2
− c1(ψ1(x))

x − ψ1(x)

)}
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The n−marginals problem reduces to 2−marginals problems

• First, minimize wrt ψ1 ≤ ψ2, given ψ2, . . . , ψn < x :

min
ψ1≤ψ2

(
c1
(
ψ1
)

x − ψ1
−

c1
(
ψ2
)

x − ψ2

)
1I{

ψ1<ψ2

}
• For i ≤ n, assume ψ∗i−1(x) does not depend on ψi on
{ψ∗i−1(x) < ψi} for all x ≥ 0. Then with ψn+1(x) = x :

min
ψi≤ψi+1

ci
(
ψi
)

x − ψi
−

(
ci−1

(
ψi
)

x − ψi
−

ci−1
(
ψ
∗
i−1(x)

)
x − ψ∗i−1(x)

)
1I{

ψ
∗
i−1(x)<ψi

}
These steps are similar to the 2−marginals case of Brown, Hobson
and Rogers...
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Solving the n−marginals problem

Step 1 : ψ∗1 = b−1
1

Step i : minimization over ψi ≤ ψi+1, given ψ
∗
i−1 :

• If bi ≤ bi+1, we find ψ∗i = b−1
i (this recovers Madan and Yor)

• In the general case (not covered in the literature), we rely on :

Lemma Let i = 2, . . . , n be fixed, assume that ci ≥ ci−1, and let
ψi
∗
(x) be any minimizer of the Step i problem. Then, the function

x 7−→ ψi
∗
(x) is nondecreasing
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Future projects

• Continuous-time limit (extension of Madan-Yor 02)

• Construct martingale processes corresponding to the bound

• Lower/upper bound on Variance calls given 1 (and more generally
n) marginals,

• General theory for the treatment of stochastic control problems
given marginals, i.e. optimal transportation along controlled
stochastic dynamics
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