Model independent bounds for options pricing A stochastic control approach

Nizar TOUZI

Ecole Polytechnique Paris

Joint work with: A. Galichon and P. Henry-Labordère

Working Group on Risk, ESSEC Paris, May 19, 2011

Outline

- 1 Optimal transportation Monge-Kantorovitch
- Optimal transportation along controlled stochastic dynamics
- 3 Super and sub-hedging under uncertain volatility
 - Problem formulation
 - Connection with previous literature
 - Exploiting the dual formulation
 - Extension to many marginals

Problème des déblais et des remblais

Gaspard Monge (1746-1818) formulated in 1781 the following engineering problem :

Transportation of mass for the lowest cost, given initial and final distribution

Analytic formulation

- ullet Initial distribution : probability measure μ_0
- ullet Final distribution : probability measure μ_1

Problem:

$$\min_{T \in \mathcal{T}(\mu_0, \mu_1)} \int c(x, T(x)) \mu_0(dx)$$

where $\mathcal{T}(\mu_0, \mu_1)$ of all maps $T: x \longmapsto T(x)$ such that

$$\mu_1 = \mu_0 \circ T^{-1}$$

Probabiblistic formulation

ullet Leonid Vitaliyevich Kantorovich (1912-1986) provided in 1942 a formulation which does not involve the transportation scheme T:

$$\inf_{\pi \in \Pi(\mu_0, \mu_1)} \int c(x, y) \pi(dx, dy)$$

where $\Pi(\mu_0, \mu_1)$ is the collection of all joint probability measures with marginals μ_0 and μ_1

Exemple: $c(x,y) = |x-y|^2 \Longrightarrow$ maximization of correlations:

$$sup_{\pi \in \Pi(\mu_0, \mu_1)} \mathbb{E}^{\pi}[XY]$$

The discrete version

- The discrete version is called Optimal assignment problem and is widely studied in the operations research literature :
- Assignment persons / jobs
- Hedge funds : assignment of executed orders to different funds...

Kantorovich duality

Duality in linear programming, Legendre-Fenchel duality...

- Penalize the constraint ⇒ Lagrangian
- $\min_{\pi} \max_{\lambda} = \max_{\lambda} \min_{\pi}$

This leads to the dual formulation :

$$\sup\big\{\int \psi(y)\mu_1(dy)-\int \varphi(x)\mu_0(dx):\psi(y)-\varphi(x)\leq c(x,y)\big\}$$

Economic interpretation:

- $\varphi(x)$ bid price at x (buy at this price)
- $\psi(y)$ ask price at y (sell at this price)

Outline

- 1 Optimal transportation Monge-Kantorovitch
- 2 Optimal transportation along controlled stochastic dynamics
- 3 Super and sub-hedging under uncertain volatility
 - Problem formulation
 - Connection with previous literature
 - Exploiting the dual formulation
 - Extension to many marginals

Controlled dynamics

- ullet W : Brownian motion with values in \mathbb{R}^d
- \mathcal{U} : collection of all control processes $\nu=(b,\sigma^2)$ prog. measurable processes (with appropriate dimensions) valued in U (closed convex subset of \mathbb{R}^k)
- Controlled dynamics :

$$dX_t = b_t dt + \sigma_t dW_t$$

We shall impose the transportation to follows the above dynamics for some choice of control (b, σ^2)

Mikami and Thieullen considered the case $U = \mathbb{R}^{k'} \times \{I_d\}$ (fixed diffusion coefficient)

Optimal transportation problem

Optimal transportation under controlled stochastic dynamics :

$$V_0 := \inf_{\nu \in \mathcal{U}(\mu_0, \mu_1)} \mathbb{E} \left[\int_0^1 L(t, \underline{X}_t, \nu_t) dt \right]$$

where $\underline{X}_t := (X_u)_{u \leq t}$ and

$$\mathcal{U}(\mu_0,\mu_1) \ := \ \left\{ \nu \in \mathcal{U}: \ X_0 \sim \mu_0 \text{ and } X_1 \sim \mu_1 \right\}$$

Dual formulation (Xiaolu TAN)

Assume $u \longmapsto L(t, x_{\cdot}, u)$ convex and coercive then

$$V_0 = \sup_{\varphi_1 \in C_b^0} \int \varphi_1(y) \mu_1(dy) + \int \varphi_0(x) \mu_0(dx)$$

where $\varphi_0(x) = \varphi(0,x)$ and φ defined by

$$\varphi(t,x) := \inf_{\nu \in \mathcal{U}} \mathbb{E} \left[\int_t^1 L(s,\underline{X}_s^{t,x},\nu_s) ds - \varphi_1(X_1^{t,x}) \right]$$

Unconstrained stochastic control problem

The Markov case: control of PDEs

In the Markov case

$$L(s, \underline{x}_s, u) = L(s, x_s, u)$$

The value function φ can be characterized by the dynamic programming equation :

$$\partial_t \varphi + \inf_{(b,\sigma^2) \in U} \left\{ b \cdot D\varphi + \frac{1}{2} \text{Tr} \left[\sigma^2 D^2 \varphi \right] + L(t,x,b,\sigma^2) \right\} = 0$$

$$\varphi(1,x) = \varphi_1(x)$$

⇒ Numerical schemes...

Outline

- 1 Optimal transportation Monge-Kantorovitch
- Optimal transportation along controlled stochastic dynamics
- 3 Super and sub-hedging under uncertain volatility
 - Problem formulation
 - Connection with previous literature
 - Exploiting the dual formulation
 - Extension to many marginals

Unspecified volatility process: abstract formulation

- $\Omega = \{ \omega \in C(\mathbb{R}_+) : \omega(0) = 0 \},$
- ullet B coordinate process, $\mathbb{F}=\{\mathcal{F}_t,t\geq 0\}$, \mathbb{P}_0 : Wiener measure

Suppose that B is only known to be a continuous local martingale with quadratic variation $\langle B \rangle$ a.c. wrt Lebesgue. Let

$$\mathcal{P} := \left\{ \mathbb{P}_0 \circ (\int_0^\cdot \sigma_t dB_t)^{-1} : \ \sigma \ \mathbb{F} - ext{prog. meas.}, \ \int_0^T |\sigma_t|^2 dt < \infty
ight\}$$

Zero interest rate, and risky asset defined by :

$$dS_t = S_t dB_t, \mathcal{P} - q.s.$$

where \mathcal{P} -quasi-surely means \mathbb{P} -a.s. for all $\mathbb{P} \in \mathcal{P}$

Model-free bounds

ullet Super-hedging and Sub-hedging problems of $\mathcal{F}_{\mathcal{T}}-$ meas. r.v. ξ

$$U := \inf \left\{ X_0 : \exists H \in \mathcal{H} : X_0 + \int_0^T H_t dB_t \ge \xi, \ \mathcal{P} - q.s. \right\}$$
$$L := \sup \left\{ X_0 : \exists H \in \mathcal{H} : X_0 + \int_0^T H_t dB_t \le \xi, \ \mathcal{P} - q.s. \right\}$$

- ullet the portfolio ${\it H} \in {\it H}$ does not depend on a particular ${\mathbb P} \in {\it P}...$
- Denis-Martini 2005 and Peng 2007 for the bounded volatility case $(\underline{\sigma} \leq \sigma_{.} \leq \overline{\sigma})$

More appealing formulation

- ullet Control process is the volatlity σ valued in \mathbb{R}_+
- Controlled process is the underlying asset price process :

$$dS_t = S_t \sigma_t dW_t$$

• Model-free bounds for the derivative $\xi(\underline{S}_T)$

$$U := \inf \left\{ X_0 : \exists H \in \mathcal{H} : X_0 + \int_0^T H_t dB_t \ge \xi, \text{ a.s. for all } \sigma_{\cdot} \right\}$$

$$L := \sup \left\{ X_0 : \exists H \in \mathcal{H} : X_0 + \int_0^T H_t dB_t \le \xi, \text{ a.s. for all } \sigma_. \right\}$$

Dual formulation

Consider the superhedging problem

$$U_0 := \inf \left\{ X_0 : \ X_0 + \int_0^T H_t dB_t \ge \xi, \ \mathcal{P} - ext{q.s. for some } H \in \mathcal{H}_0
ight\}$$

where

$$\mathcal{H}_0 := \left\{ H: \ H \in \mathbb{H}^2_{loc}(\mathbb{P}) \ \mathsf{and} \ X^H \geq \mathsf{Mart}^\mathbb{P}, \ \forall \mathbb{P} \in \mathcal{P}
ight\}$$

Theorem (Soner, T., Zhang 2010) For all $\xi \in \mathcal{L}^{\infty}_{\mathcal{P}}$:

$$U_0 = \sup_{\mathbb{P}\in\mathcal{P}}\mathbb{E}^{\mathbb{P}}[\xi]$$

and existence holds for the problem U_0

Bounds with no further information

For
$$\xi = g(S_T)$$
, we find

$$U_0(\xi) = g^{\mathsf{conc}}(S_0)$$
 and $L_0(\xi) = g^{\mathsf{conv}}(S_0)$

and the corresponding hedging strategy H^* is of type Buy-and-Hold

⇒ dynamic hedge does not help to reduce the superhedging cost...

Model-free bounds with more information

• Suppose that prices of T-maturity call options for all possible strikes c(k), $k \ge 0$ are observed and tradable. Then the map

$$k \longmapsto c(k) := \mathbb{E}[(S_T - k)^+]$$

characterizes the distribution $S_{\mathcal{T}}\sim_{\mathbb{P}}\mu$ by $\muig([k,\infty)ig)=-c'(k)$

The no-arbitrage bounds can be improved to

$$U(\mu) := \inf \left\{ X_0 : \exists H \in \mathcal{H}, \ \lambda \in \Lambda : X_T^{H,\lambda} \ge \xi, \ \mathcal{P} - q.s. \right\}$$

$$L(\mu) := \sup \left\{ X_0 : \exists H \in \mathcal{H}, \ \lambda \in \Lambda : X_T^{H,\lambda} \le \xi, \ \mathcal{P} - q.s. \right\}$$

where $\Lambda = \{ bdd \text{ measurable functions} \}$ and

$$X_{T}^{H,\lambda} := X_{0} + \int_{0}^{T} H_{t} dB_{t} + \lambda (S_{T}) - \mu(\lambda)$$

$$= X_{0} + \int_{0}^{T} H_{t} dB_{t} + \int \lambda''(k) [(S_{T} - k)^{+} - c(k)] dk''$$

Model-free bounds with more information

• Suppose that prices of T-maturity call options for all possible strikes c(k), $k \ge 0$ are observed and tradable. Then the map

$$k \longmapsto c(k) := \mathbb{E}[(S_T - k)^+]$$

characterizes the distribution $S_{\mathcal{T}}\sim_{\mathbb{P}}\mu$ by $\mu([k,\infty))=-c'(k)$

• The no-arbitrage bounds can be improved to

$$U(\mu) := \inf \left\{ X_0 : \exists H \in \mathcal{H}, \ \lambda \in \Lambda : X_T^{H,\lambda} \ge \xi, \ \mathcal{P} - q.s. \right\}$$

$$L(\mu) := \sup \left\{ X_0 : \exists H \in \mathcal{H}, \ \lambda \in \Lambda : X_T^{H,\lambda} \le \xi, \ \mathcal{P} - q.s. \right\}$$

where $\Lambda = \{bdd \text{ measurable functions}\}$ and

$$X_{T}^{H,\lambda} := X_{0} + \int_{0}^{T} H_{t} dB_{t} + \lambda(S_{T}) - \mu(\lambda)$$

$$" = X_{0} + \int_{0}^{T} H_{t} dB_{t} + \int \lambda''(k) [(S_{T} - k)^{+} - c(k)] dk "$$

Duality and stochastic control

Notice that

$$U(\mu) = \inf_{\lambda \in \Lambda} \inf \left\{ X_0 : \exists H \in \mathcal{H}, X_T^H \ge \xi - \lambda(S_T) + \mu(\lambda), \ \mathcal{P} - q.s. \right\}$$

$$L(\mu) = \sup\nolimits_{\lambda \in \Lambda} \ \sup \left\{ X_0: \ \exists \ H \in \mathcal{H}, X_T^H \leq \xi - \lambda(S_T) + \mu(\lambda), \ \mathcal{P} - \mathsf{q.s.} \right\}$$

Then, the previous duality implies that

$$U(\mu) := \inf_{\lambda \in \Lambda} \sup_{\mathbb{P} \in \mathcal{P}} \mathbb{E}^{\mathbb{P}} \Big[\xi - \lambda(S_T) + \mu(\lambda) \Big]$$

$$L(\mu) := \sup_{\lambda \in \Lambda} \inf_{\mathbb{P} \in \mathcal{P}} \mathbb{E}^{\mathbb{P}} \Big[\xi - \lambda(S_T) + \mu(\lambda) \Big]$$

ullet For every fixed λ : standard stochastic control problem...

The Skorohod Embedding Problem

Previous literature by D. Hobson, L.C.G. Rogers, A. Cox, J. Obloj, B. Dupire, P. Carr, R. Lee

adressed this problem by using results from the SEP :

Given
$$\mu$$
 probability measure on $\mathbb R$ with $\int |x| \mu(dx) < \infty$
Find a stopping time τ such that $B_{\tau} \sim \mu$ and $\{B_{t \wedge \tau}, t \geq 0\}$ UI martingale

(Hall, Monroe, Azéma, Yor, Perkins, Chacon, Walsh, Rost, Root, Bass, Vallois)

• More than twenty known solutions (see Obloj for a survey)

Example: the Azéma-Yor solution

Define the barycenter function :

$$b(x) := \frac{\int_{x}^{\infty} s\mu(ds)}{\int_{x}^{\infty} \mu(ds)}$$

Then, the Azéma-Yor solution of the SEP is :

$$au_{\mathsf{AY}} := \inf \left\{ t > 0 : \; B_t^* > b(B_t)
ight\}, \; \; ext{with} \; \; B_t^* := \max_{s \leq t} B_s$$

i.e. $\{B_{t\wedge \tau_{AY}}, t\geq 0\}$ is UI martingale and $B_{\tau_{AY}}\sim \mu$.

For later use

$$\frac{c(\zeta)}{x-\zeta}$$
 decreases on $\left[0,b^{-1}(x)\right]$ and increases on $\left[b^{-1}(x),x\right]$

Example: the Azéma-Yor solution

Define the barycenter function :

$$b(x) := \frac{\int_{x}^{\infty} s\mu(ds)}{\int_{x}^{\infty} \mu(ds)}$$

Then, the Azéma-Yor solution of the SEP is :

$$\tau_{\mathsf{AY}} := \inf \left\{ t > 0: \ B_t^* > b(B_t) \right\}, \quad \text{with} \quad B_t^* := \max_{s \leq t} B_s$$

i.e. $\{B_{t \wedge \tau_{AY}}, t \geq 0\}$ is UI martingale and $B_{\tau_{AY}} \sim \mu$.

For later use

$$\frac{c(\zeta)}{x-\zeta}$$
 decreases on $\left[0,b^{-1}(x)\right]$ and increases on $\left[b^{-1}(x),x\right]$

Connection with our problem

• $(M_t)_{t\geq 0}$ continuous martingale, $M_0=0$ and $M_T\sim \mu$,

Then $M_t = B_{\langle M \rangle_t}$ and $\langle M \rangle_T$ solution of SEP

 \bullet Let au be a solution of SEP

Then $M_t:=B_{\frac{t}{T-t}\wedge au}$ is a continuous martingale, $M_0=0$ and $M_{ au}\sim \mu.$

Optimality of the Azéma-Yor solution

Let g be C^1 nondecreasing, and define :

$$H(m,x)$$
 := $\int_0^m g'(r) \frac{r-x}{r-b^{-1}(r)} dr$ so that

- $\{H(B_t^*, B_t), t \ge 0\}$ is a local martingale
- $g(m) H(m,x) \le g(b(x)) H(b(x),x) =: G(x)$

Then

$$g(B_{\tau}^*) \le \underbrace{H(B_{\tau}^*, B_{\tau})}_{\text{(loc. mart.)}_{\tau}} + G(B_{\tau})$$

and

$$\sup_{\mathbb{P}\in\mathcal{P}(\mu)}\mathbb{E}^{\mathbb{P}}\left[g(S_{T}^{*})\right]=\max_{\tau\in\mathcal{T}(\mu)}\mathbb{E}\left[g\left(B_{\tau}^{*}\right)\right]=\int G(x)\mu(dx)=\mathbb{E}\left[g\left(B_{\tau_{\mathsf{AY}}}^{*}\right)\right]_{\mathcal{A}}$$

For general derivatives: Numerical approximation

ullet For every fixed λ , build a numerical scheme to approximate the value function

$$u^{\lambda} := \inf_{\mathbb{P} \in \mathcal{P}} \mathbb{E} \left[\xi - \lambda(S_T) \right]$$

this is a singular stochastic control, which can be characterized by an elliptic equation... finite differences

• Minimize over λ :

$$\inf_{\lambda} \mu(\lambda) - u^{\lambda}$$

numerical approximation by the gradient projection algorithm...

Xiaolu TAN...

For general derivatives: Numerical approximation

ullet For every fixed λ , build a numerical scheme to approximate the value function

$$u^{\lambda} := \inf_{\mathbb{P} \in \mathcal{P}} \mathbb{E} \left[\xi - \lambda(S_T) \right]$$

this is a singular stochastic control, which can be characterized by an elliptic equation... finite differences

• Minimize over λ :

$$\inf_{\lambda} \mu(\lambda) - u^{\lambda}$$

numerical approximation by the gradient projection algorithm...

Xiaolu TAN...

Lookback options with one known marginal distribution

Let:

$$\xi = g(S_T, S_T^*)$$
 where $S_T^* := \max_{t \leq T} S_t$

Our main results:

recover the known explicit bounds in this context (so far, those induced by the Azéma-Yor embedding)

Hobson 98, Hobson and Kimmel 2011

Dynamic Programming Equation – Fixed λ

Given $\lambda(.)$, the stochastic control problem is

$$u^{\lambda}(t,s,m) := \sup_{\mathbb{P} \in \mathcal{P}} \mathbb{E}^{P} \left[g(S_{T}^{t,s}, M_{T}^{t,s,m}) - \lambda(S_{T}^{t,s}) \right], \quad M_{T}^{t,s,m} := m \vee \max_{[t,T]} S_{T}^{t,s}$$

 \Longrightarrow Optimal stopping representation and DPE characterization :

$$u^{\lambda}(t,s,m) = u^{\lambda}(s,m) = \sup_{\tau \in \mathcal{T}} \mathbb{E}\left[g(S^{s}_{\tau},M^{s,m}_{\tau}) - \lambda(S^{s}_{\tau})\right]$$

$$\min \left\{ u^{\lambda} - (g - \lambda), -u_{ss}^{\lambda} \right\} = 0 \text{ for } 0 < s < m$$

$$u_{m}^{\lambda}(m, m) = 0$$

Optimal stopping policy τ^* (if exists) \Longrightarrow Optimal volatility process σ^*

Dynamic Programming Equation – Fixed λ

Given $\lambda(.)$, the stochastic control problem is

$$u^{\lambda}(t,s,m) := \sup_{\mathbb{P} \in \mathcal{P}} \mathbb{E}^{P} \left[g(S_{T}^{t,s},M_{T}^{t,s,m}) - \lambda(S_{T}^{t,s})
ight], \quad M_{T}^{t,s,m} := m \vee \max_{[t,T]} S_{T}^{t,s}$$

⇒ Optimal stopping representation and DPE characterization :

$$u^{\lambda}(t,s,m) = u^{\lambda}(s,m) = \sup_{\tau \in \mathcal{T}} \mathbb{E}\left[g(S^{s}_{\tau},M^{s,m}_{\tau}) - \lambda(S^{s}_{\tau})\right]$$

$$\min \left\{ u^{\lambda} - (g - \lambda), -u_{ss}^{\lambda} \right\} = 0 \text{ for } 0 < s < m$$

$$u_{m}^{\lambda}(m, m) = 0$$

Optimal stopping policy τ^* (if exists) \Longrightarrow Optimal volatility process σ^*

Lagrange Multipliers reduction

We first prove that :

$$U(\mu) = \inf_{\substack{\mathsf{gss} - \lambda'' \leq 0 \\ \mathsf{g} \in \mathcal{T}}} \sup_{\tau \in \mathcal{T}} \mu(\lambda) + \mathbb{E}\left[g(M^{s,m}_{\tau}) - \lambda(S^{s}_{\tau})\right]$$

Solving the optimal stopping problem

Given λ with $g - \lambda$ concave :

$$u^{\lambda}(s, m) = \sup_{\tau \in \mathcal{T}} \mathbb{E}\left[g(S^{s}_{\tau}, M^{s, m}_{\tau}) - \lambda(S^{s}_{\tau})\right]$$

assume g is C^1 increasing, then we expect that there is a boundary ψ (continuous increasing) so that :

$$u^{\lambda}(s,m) = (g-\lambda)(s \wedge \psi(m),m) + \big(g-\lambda)_s(s \wedge \psi(m),m)\big(s-s \wedge \psi(m)\big)$$

The Neuman condition provides the (ODE) for ψ :

$$(g-\lambda)_{ss}(\psi(m),m)\psi'(m) = \frac{g_m(\psi(m),m)}{m-\psi(m)} + g_{sm}(\psi(m),m)$$

The explicit upper bound

W.l.o.g. $\lambda(S_0) = 0$, then :

$$\begin{array}{lll} U(\mu) & = & g(S_0) + \inf_{\lambda'' \geq 0} \; \mu(\lambda) + \int_{\psi(M_0)}^{S_0 \vee \psi(M_0)} (s-k) \lambda''(k) dk \\ \\ & \geq & g(S_0) + \inf_{\lambda'' \geq 0} \; \int c(k) \lambda''(k) dk \\ \\ & = & g(S_0) + \inf_{\lambda'' \geq 0} \; \int c(\psi(x)) \lambda''(\psi(x)) \psi'(x) dx \\ \\ & = & g(S_0) + \inf_{\psi \in \dots} \; \int c(\psi(x)) \frac{g'(x)}{x - \psi(x)} dx \quad (ODE) \\ \\ & \geq & g(S_0) + \int \inf_{\psi < x} \frac{c(\psi)}{x - \psi} \; g'(x) dx \; \longrightarrow \; \psi^*(x) = b^{-1}(x) \end{array}$$

Azéma-Yor. The reverse inequality is obvious...

The explicit upper bound

W.l.o.g. $\lambda(S_0) = 0$, then :

$$\begin{array}{lll} U(\mu) & = & g(S_0) + \inf_{\lambda'' \geq 0} \; \mu(\lambda) + \int_{\psi(M_0)}^{S_0 \vee \psi(M_0)} (s-k)\lambda''(k)dk \\ & \geq & g(S_0) + \inf_{\lambda'' \geq 0} \; \int c(k)\lambda''(k)dk \\ & = & g(S_0) + \inf_{\lambda'' \geq 0} \; \int c(\psi(x))\lambda''(\psi(x))\psi'(x)dx \\ & = & g(S_0) + \inf_{\psi \in \dots} \; \int c(\psi(x))\frac{g'(x)}{x - \psi(x)}dx \quad (ODE) \\ & \geq & g(S_0) + \int \inf_{\psi < x} \frac{c(\psi)}{x - \psi} \; g'(x)dx \; \longrightarrow \; \psi^*(x) = b^{-1}(x) \end{array}$$

Azéma-Yor. The reverse inequality is obvious...

A recursive sequence of control problems

Given *n* functions $\lambda = (\lambda_i)_{1 \le i \le n}$ define :

$$u^{\lambda} := u^{0}(S_{0}, M_{0}) = \sup_{\mathbb{P} \in \mathcal{P}} \mathbb{E}^{\mathbb{P}} \left[g(M_{t_{n}}) - \sum_{i=1}^{n} \lambda_{i}(S_{t_{n}}) \right]$$

Optimal upper bound given that $S_{t_i} \sim \mu_i$, $i \leq n$:

$$\inf_{(\lambda_i)_{1\leq i\leq n}} \sum_{i=1}^n \mu_i(\lambda_i) + u^{\lambda_i}$$

Then, we introduce for $i=1,\ldots,n$:

$$u^{n}(s, m) := g(m)$$
 $u^{i-1}(s, m) := \sup_{\mathbb{P} \in \mathcal{P}} \mathbb{E}^{\mathbb{P}} \left[u^{i}(S_{t_{n}}, M_{t_{n}}) - \lambda_{i}(S_{t_{n}}) \middle| (S, M)_{t_{n-1}} = (s, m) \right]$

A recursive sequence of control problems

Given *n* functions $\lambda = (\lambda_i)_{1 \le i \le n}$ define :

$$u^{\lambda} := u^{0}(S_{0}, M_{0}) = \sup_{\mathbb{P} \in \mathcal{P}} \mathbb{E}^{\mathbb{P}} \left[g(M_{t_{n}}) - \sum_{i=1}^{n} \lambda_{i}(S_{t_{n}}) \right]$$

Optimal upper bound given that $S_{t_i} \sim \mu_i$, $i \leq n$:

$$\inf_{(\lambda_i)_{1 \le i \le n}} \sum_{i=1}^n \mu_i(\lambda_i) + u^{\lambda}$$

Then, we introduce for i = 1, ..., n:

$$u^{n}(s, m) := g(m)$$
 $u^{i-1}(s, m) := \sup_{\mathbb{P} \in \mathcal{P}} \mathbb{E}^{\mathbb{P}} \left[u^{i}(S_{t_{n}}, M_{t_{n}}) - \lambda_{i}(S_{t_{n}}) \middle| (S, M)_{t_{n-1}} = (s, m) \right]$

Extension of Peskir's maximality principle

Lemma Optimization can be restricted to those λ_i 's such that $\lambda^i - u^i$ is strictly convex for all i = 1, ..., n

Theorem For λ^i s.t. $\lambda^i - u^i$ is strictly convex, $u^{i-1} < \infty$ iff there is a maximal solution ψ_i of the ODE

$$\psi_i'\left(\lambda_i''(\psi_i) - u_{ss}^i(\psi_i, m)\right) = u_{sm}^i\left(\psi_i, m\right) + \frac{u_m'\left(\psi_i, m\right)}{m - \psi_i}$$

which stays strictly below the diagonal $\psi_i(m) < m, m \ge 0$. In this case :

$$u^{i-1}(s,m) = u^{i}(s,m) - \lambda_{i}(s) + \int_{\psi_{i}(m)}^{s \vee \psi_{i}(m)} (s-k) \left(\lambda_{i}''(k) - u_{ss}^{i}(k,m)\right) dk$$

Explicit finite dimensional optimization problem

Proceeding as in the case of one marginal, we arrive at the optimization problem :

$$U(\mu_{1},\ldots,\mu_{n}) \geq \int \inf_{0<\psi_{\cdot}$$

where

$$\overline{\psi}_i := \psi_i \wedge \ldots \wedge \psi_n$$
 for all $i = 1, \ldots, n$

Optimal upper bound given two marginals

The case n = 2 reduces to :

$$\inf_{\psi_i < x} \left\{ c_2(\psi_2) - 1\!\!1_{\{\psi_2 > \psi_1\}} \left(\frac{c_1(\psi_2)}{x - \psi_2} - \frac{c_1(\psi_1)}{x - \psi_1} \right) \right\}$$

which recovers Hobson and Rogers 1998 \Longrightarrow

- $\psi_1(x) = b_1^{-1}(x)$ (Azéma-Yor)
- $\psi_2(x)$ defined by

$$\inf_{\psi_2 < x} \left\{ c_2(\psi_2) - \mathbb{I}_{\{\psi_2 > \psi_1(x)\}} \left(\frac{c_1(\psi_2)}{x - \psi_2} - \frac{c_1(\psi_1(x))}{x - \psi_1(x)} \right) \right\}$$

The n-marginals problem reduces to 2-marginals problems

ullet First, minimize wrt $\overline{\psi}_1 \leq \overline{\psi}_2$, given $\underline{\psi}_2, \dots, \underline{\psi}_n < x$:

$$\min_{\overline{\psi}_1 \leq \overline{\psi}_2} \left(\frac{c_1(\overline{\psi}_1)}{x - \overline{\psi}_1} - \frac{c_1(\overline{\psi}_2)}{x - \overline{\psi}_2} \right) \mathbb{1}_{\left\{\overline{\psi}_1 < \overline{\psi}_2\right\}}$$

• For $i \leq n$, assume $\overline{\psi}_{i-1}^*(x)$ does not depend on $\overline{\psi}_i$ on $\{\overline{\psi}_{i-1}^*(x) < \overline{\psi}_i\}$ for all $x \geq 0$. Then with $\psi_{n+1}(x) = x$:

$$\min_{\overline{\psi}_i \leq \overline{\psi}_{i+1}} \frac{c_i(\overline{\psi}_i)}{x - \overline{\psi}_i} - \left(\frac{c_{i-1}(\overline{\psi}_i)}{x - \overline{\psi}_i} - \frac{c_{i-1}(\overline{\psi}_{i-1}^*(x))}{x - \overline{\psi}_{i-1}^*(x)}\right) \mathbb{1}_{\left\{\overline{\psi}_{i-1}^*(x) < \overline{\psi}_i\right\}}$$

These steps are similar to the 2-marginals case of Brown, Hobson and Rogers...

The n-marginals problem reduces to 2-marginals problems

ullet First, minimize wrt $\overline{\psi}_1 \leq \overline{\psi}_2$, given $\underline{\psi}_2, \dots, \underline{\psi}_n < x$:

$$\min_{\overline{\psi}_1 \leq \overline{\psi}_2} \left(\frac{c_1(\overline{\psi}_1)}{x - \overline{\psi}_1} - \frac{c_1(\overline{\psi}_2)}{x - \overline{\psi}_2} \right) \mathbb{1}_{\left\{\overline{\psi}_1 < \overline{\psi}_2\right\}}$$

• For $i \leq n$, assume $\overline{\psi}_{i-1}^*(x)$ does not depend on $\overline{\psi}_i$ on $\{\overline{\psi}_{i-1}^*(x) < \overline{\psi}_i\}$ for all $x \geq 0$. Then with $\psi_{n+1}(x) = x$:

$$\min_{\overline{\psi}_{i} \leq \overline{\psi}_{i+1}} \frac{c_{i}(\overline{\psi}_{i})}{x - \overline{\psi}_{i}} - \left(\frac{c_{i-1}(\overline{\psi}_{i})}{x - \overline{\psi}_{i}} - \frac{c_{i-1}(\overline{\psi}_{i-1}^{*}(x))}{x - \overline{\psi}_{i-1}^{*}(x)}\right) \mathbb{I}_{\left\{\overline{\psi}_{i-1}^{*}(x) < \overline{\psi}_{i}\right\}}$$

These steps are similar to the 2-marginals case of Brown, Hobson and Rogers...

Solving the *n*-marginals problem

Step 1 :
$$\psi_1^* = b_1^{-1}$$

Step i: minimization over $\overline{\psi}_i \leq \overline{\psi}_{i+1}$, given $\overline{\psi}_{i-1}^*$:

- If $b_i \leq b_{i+1}$, we find $\psi_i^* = b_i^{-1}$ (this recovers Madan and Yor)
- In the general case (not covered in the literature), we rely on :

Lemma Let $i=2,\ldots,n$ be fixed, assume that $c_i \geq c_{i-1}$, and let $\overline{\psi_i}^*(x)$ be any minimizer of the Step i problem. Then, the function $x \longmapsto \overline{\psi_i}^*(x)$ is nondecreasing

Solving the n-marginals problem

Step 1 :
$$\psi_1^* = b_1^{-1}$$

Step i: minimization over $\overline{\psi}_i \leq \overline{\psi}_{i+1}$, given $\overline{\psi}_{i-1}^*$:

- If $b_i \leq b_{i+1}$, we find $\psi_i^* = b_i^{-1}$ (this recovers Madan and Yor)
- In the general case (not covered in the literature), we rely on :

Lemma Let $i=2,\ldots,n$ be fixed, assume that $c_i \geq c_{i-1}$, and let $\overline{\psi_i}^*(x)$ be any minimizer of the Step i problem. Then, the function $x \longmapsto \overline{\psi_i}^*(x)$ is nondecreasing

Solving the *n*-marginals problem

Step 1 :
$$\psi_1^* = b_1^{-1}$$

Step i: minimization over $\overline{\psi}_i \leq \overline{\psi}_{i+1}$, given $\overline{\psi}_{i-1}^*$:

- If $b_i \leq b_{i+1}$, we find $\psi_i^* = b_i^{-1}$ (this recovers Madan and Yor)
- In the general case (not covered in the literature), we rely on :

Lemma Let $i=2,\ldots,n$ be fixed, assume that $c_i\geq c_{i-1}$, and let $\overline{\psi_i}^*(x)$ be any minimizer of the Step i problem. Then, the function $x\longmapsto \overline{\psi_i}^*(x)$ is nondecreasing

- Continuous-time limit (extension of Madan-Yor 02)
- Construct martingale processes corresponding to the bound
- Lower/upper bound on Variance calls given 1 (and more generally n) marginals,
- General theory for the treatment of stochastic control problems given marginals, i.e. optimal transportation along controlled stochastic dynamics

- Continuous-time limit (extension of Madan-Yor 02)
- Construct martingale processes corresponding to the bound
- Lower/upper bound on Variance calls given 1 (and more generally n) marginals,
- General theory for the treatment of stochastic control problems given marginals, i.e. optimal transportation along controlled stochastic dynamics

- Continuous-time limit (extension of Madan-Yor 02)
- Construct martingale processes corresponding to the bound
- Lower/upper bound on Variance calls given 1 (and more generally *n*) marginals,
- General theory for the treatment of stochastic control problems given marginals, i.e. optimal transportation along controlled stochastic dynamics

- Continuous-time limit (extension of Madan-Yor 02)
- Construct martingale processes corresponding to the bound
- Lower/upper bound on Variance calls given 1 (and more generally *n*) marginals,
- General theory for the treatment of stochastic control problems given marginals, i.e. optimal transportation along controlled stochastic dynamics

